Monitoring and Detecting Hydrilla: Three Case Studies in New York and New Jersey

By Chris Doyle, CLM Director of Biology

Restoring Balance. Enhancing Beauty.

Types of Aquatic Plant Surveys

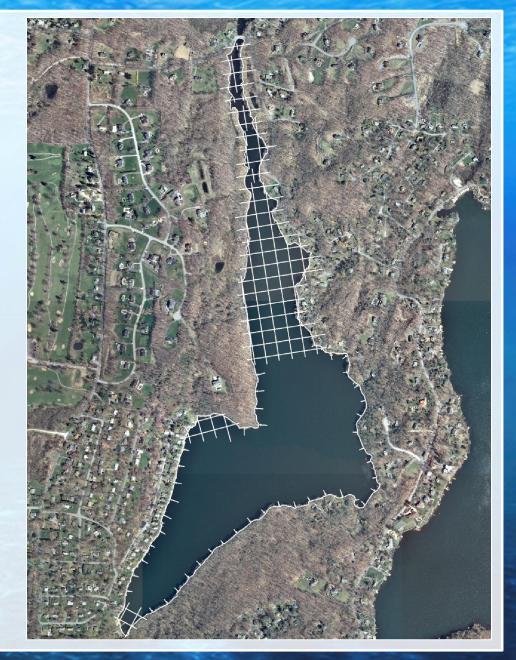
- Visual Surveys
 - Commonly Used, Easy to Perform
 - Difficult to Quantify Results/Repeat
- Biomass Sampling
 - 1-meter quadrant
- Transect Sampling
- Remote Sensing
- Point Intercept Method


"Adaptive Monitoring"

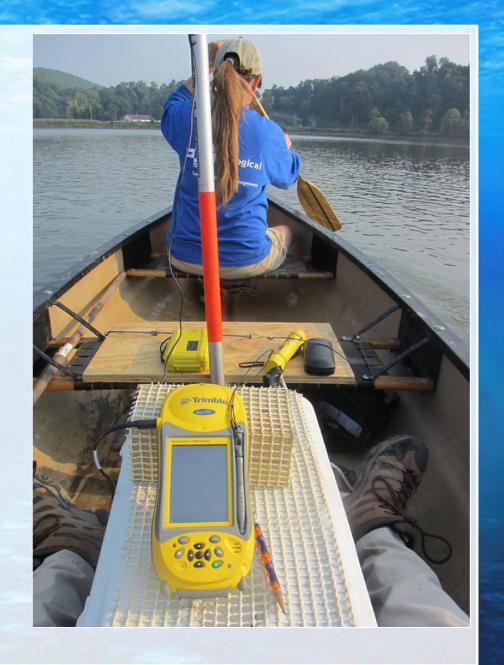
Point Intercept Aquatic Plant Survey (PIM)

- Developed by ACOE
 - Modified by Cornell University
 - Tweaked by SLM

- Recommend one survey location/hectare
- I prefer 1+ location per littoral zone acre (~100-125/day)
- Assign Plant Mass Densities
 - No plants, trace, sparse, medium, dense
 - Assigned to overall submersed plants
 - Then assigned to each different plant species



Abundance	Abundance #	Dry Weight (g/m²)	Mean Weight (g/m²)	Description
No Plants ("0")	0	0.0	0.0	Bare Rake
Trace ("T")	1	~0.0001-0.9999	0.5	Finger-full
Sparse ("S")	2	~1.0000-24.9999	13.0	Hand-full
Medium ("M")	3	~25.0000-99.9999	62.5	Covers Rake
Dense ("D")	4	~100.0000-400.0000+	250.0	Difficult to get plant mass into the boat


Overlay Grid on the Littoral Zone

- 50-meter Grid
 - Project Specific (Hydrilla)
 - Smaller = more sampling
 - Larger = less sampling
- # of Weed Rake Tosses
 - One, Two or Three
 - More Tosses = more Target or RTE species
 - But.....
 - more effort
 - verall abundance

Field Equipment

- Weed Rake
- GPS Unit
 - GeoXH Handheld
 - Sub-decimeter accuracy
 - w/post processing
- Boat
 - Prop Motor Boat
 - Access, tides, bridges, SAV growth
 - Air Boat
 - Canoe
 - On Foot

Frequency of Occurrence Table

Aquatic Macrophyte Abundance Distribution September 22, 2015

Aquatic Macrophytes	To	otal	Trace Sparse		Medium		Dense			
	Sites	%	Sites	%	Sites	%	Sites	%	Sites	%
Total Sites	50	100%								
Overall Plant Abundance	40	80%	8	20%	5	13%	13	33%	14	35%
Small Duckweed	33	66%	19	58%	10	30%	2	6%	2	6%
Brittle Naiad	31	62%	5	16%	9	29%	9	29%	8	26%
Eurasian Water Milfoil	29	58%	13	45%	10	34%	5	17%	1	3%
Coontail	18	36%	16	89%	1	6%	1	6%	0	0%
Great Duckweed	16	32%	14	88%	2	13%	0	0%	0	0%
Northern Naiad	16	32%	8	50%	6	38%	2	13%	0	0%
Water Chestnut	15	30%	8	53%	5	33%	1	7%	1	7%
Spatterdock	6	12%	4	67%	2	33%	0	0%	0	0%
Wild Celery	4	8%	3	75%	1	25%	0	0%	0	0%
Water Stargrass	4	8%	4	100%	0	0%	0	0%	0	0%
Benthic Filamentous Algae	3	6%	2	67%	1	33%	0	0%	0	0%
Common Waterweed	2	4%	1	50%	0	0%	1	50%	0	0%

Sample Abundance and Distribution Map

Project Maps

- Sample Station
- Water Depth
- Total SAV
- Each Individual Plant

For Example:

If a site has 17 different aquatic plants; 20 total maps will be produced

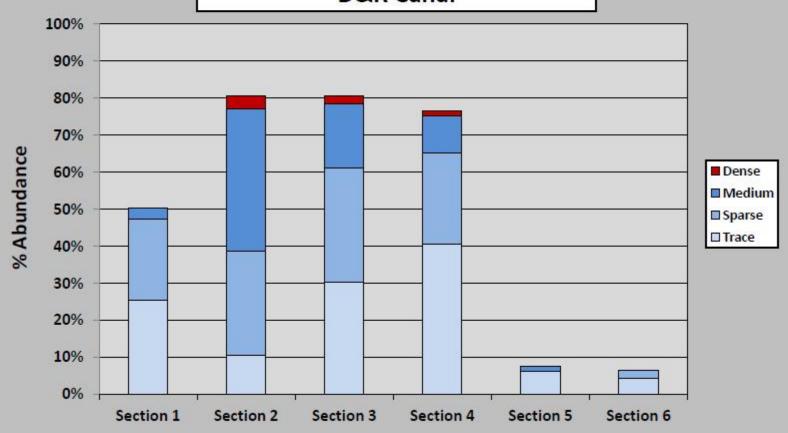
Project Specific Maps: Richness, Plant Groupings: Native/Invasive, or Pondweeds, etc.

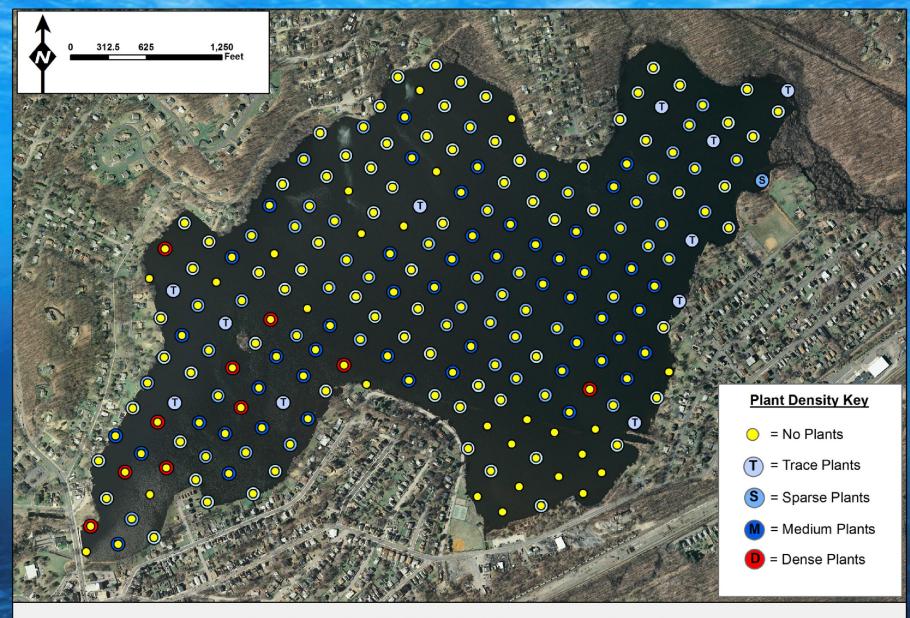
ALCYON LAKE Aquatic Vegetation Survey August 28, 2014

87 sampling points

O = No Plants
Trace Plants
O = Sparse Plants
O = Medium Plants
O = Dense Plants

Abundance	Site
Total	79
Trace	20
Sparse	30
Medium	12
Dense	17


Advantages of PIM Plant Mapping


- Standard Method
 - Important Part of Multi-year SAV Control Projects
- Repeatable
 - Suitable to track abundance and distribution changes of specific plants over time
 - Pre and Post SAV Control Efficacy
 - Site Comparisons
- Can be Conducted by Volunteer Groups
 - Limitations: GPS capabilities and Plant ID Skill

Wild Celery (Vallisneria americana)

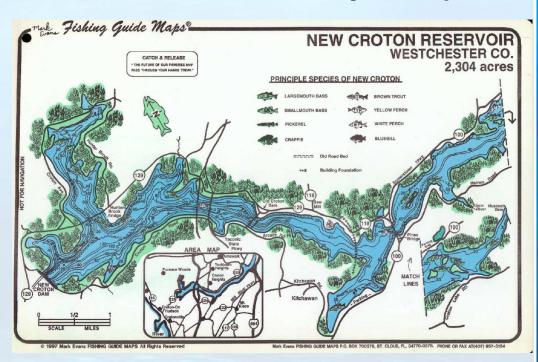
Percent Abundance by Section D&R Canal

Eurasian Water Milfoil (*Myriophyllum spicatum*) Distribution Lake Musconetcong Aquatic Vegetation Survey Septen5be0202010

Hydrilla Tuber Monitoring

Hydrilla Tuber Density

- Hydrilla tuber density over time
- Based on methods described by Johnson (2013) and NC State
- Post Hole Digger
 - 187 cm² plug
 - Calculate tubers/m²
- Increase # cores over time



Case Study #1: New Croton Reservoir

(aka Finding hydrilla in a 2300+ acre haystack)

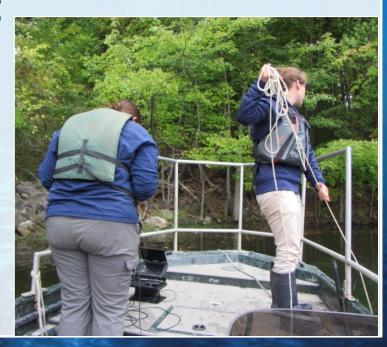
- Westchester Co., NY
- 2,304 surface acres
 - Shoreline 35.8 miles
 - Limited Littoral Zone
- Limited Bathymetry
 - Scheduled 2017
- Hydrilla Confirmed 2014
- Formal Monitoring Started 2016

Project Challenges

- Undefined Littoral Zone
 - Where to start?
- 2,300+ acres, 35+ miles shoreline
 - Traditional PIM: 15-20 days
- 2016 Budget: 6 Days
- Staff and Equipment Access
 - Security Clearance
 - Mandatory Boat/Equipment
 Cleaning

Three Phase Approach to 2016 Hydrilla Monitoring

1. Aquatic Plant Bio-volume Mapping


Hydroacoustic mapping Assumed Littoral Zone

2. PIM Aquatic Plant Mapping

On select areas from Phase 1
Coves and Shorelines

3. Tuber Monitoring

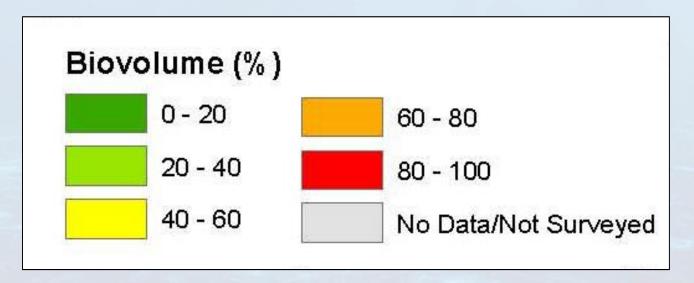
Stations Selected from Phase 2 Results

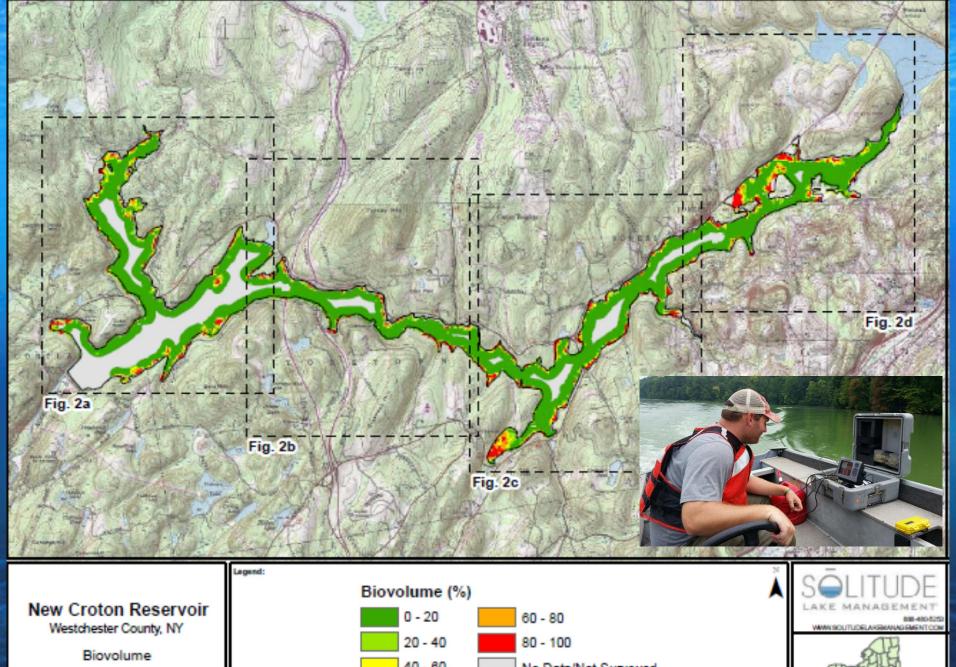
Phase 1: Hydroacoustic Plant Mapping

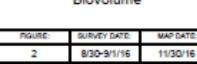
1. Side Scan Fathometer

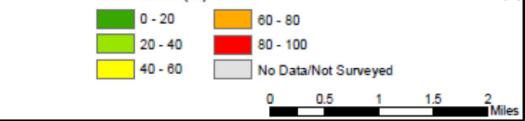
2. Data Collection

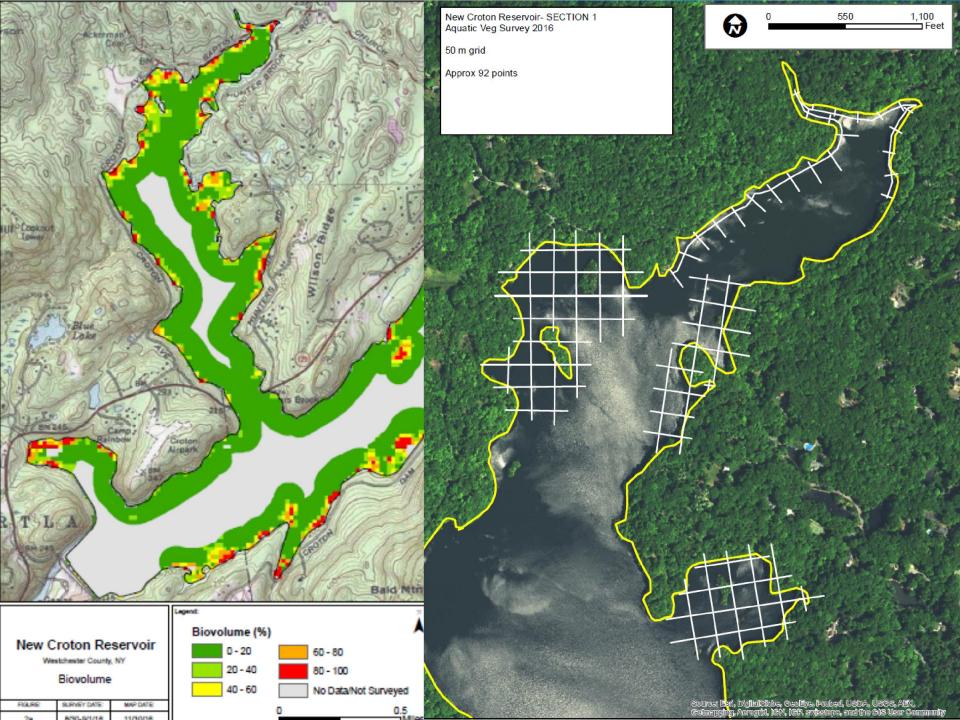
- Late August
- Boat Speed: > 8 mph
- Shorelines, coves and littoral zone
- 18 hours on water data collection
- 20-minute runs (file size)

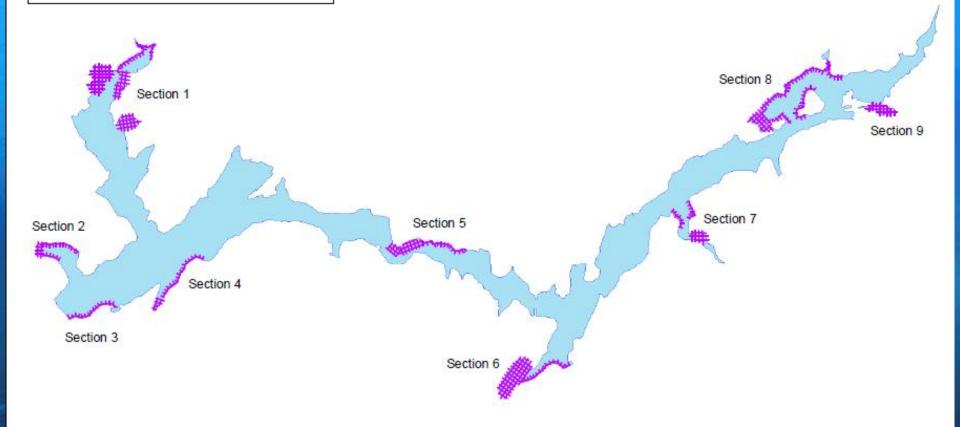

3. Data Outputs

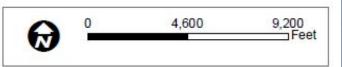

- Uploaded to Manufacturer Server (QC/Interpolation)
- Reprocessed with Spatial Analyst
- ArcMap 10.3
- Bathymetry and Bio-volume Maps

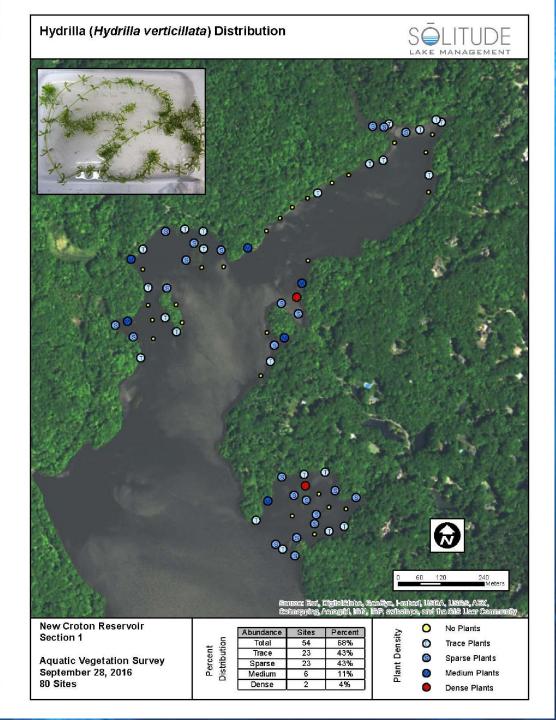



Submersed Aquatic Plant Bio-volume


- 1. % of SAV in Water Column
 - Ex. Plants at Surface = 100%
 - Ex. Water Depth 10 ft.; Plant Height 5 ft. = 50%
- 2. Displayed in a Color Array
- 3. Doesn't Differentiate Species

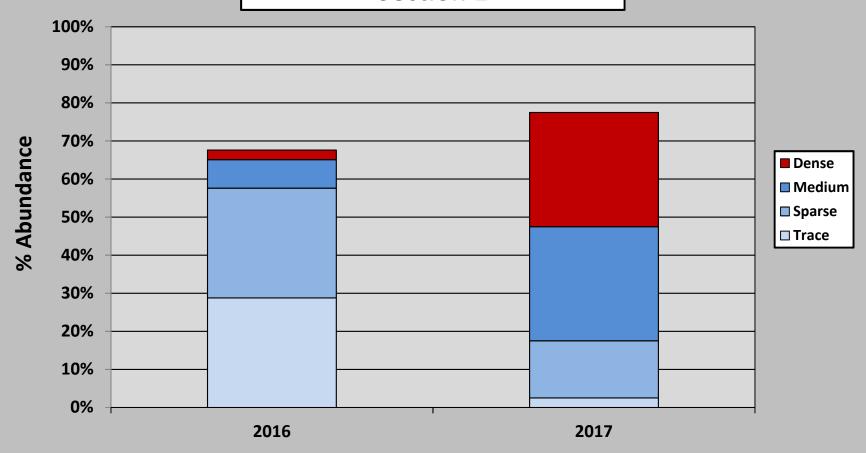





New Croton Reservoir- Overview Aquatic Veg Survey 2016 Sections 1-9 50 meters grid

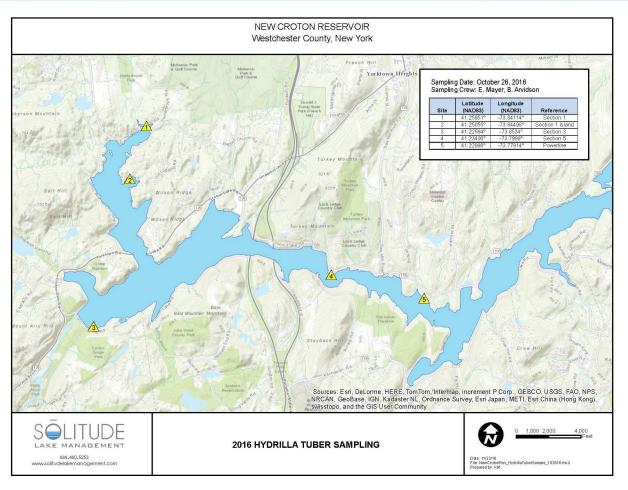
Phase 2: PIM Mapping

- Late September
- 9 Sections
- 342 Stations
- 2 tosses/station
- 50-meter grid
- All SAV species


2016 New Croton Reservoir SAV Frequency of Occurrence

Common Name	Scientific Name	# Occurrences	% Occurrence
Overall SAV		339	99.1%
Coontail	Ceratophyllum demersum	310	90.6%
Eurasian Water Milfoil	Myriophyllum spicatum	306	89.5%
Hydrilla	Hydrilla verticillata	114	33.3%
Benthic Filamentous Algae		111	32.5%
Water Smartweed	Polygonum amphibium	44	12.9%
Small Duckweed	Lemna minor	20	5.8%
Great Duckweed	Polyrhiza spirodela	14	4.1%
Common Watermeal	Wolffia columbiana	13	3.8%
Brittle Naiad	Najas minor	10	2.9%
White Water Lily	Nymphaea odorata	3	0.9%
Leafy Pondweed	Potamogeton foliosus	3	0.9%
Long-leaf Pondweed	Potamogeton nodosus	3	0.9%
Clasping-leaf Pondweed	Potamogeton richardsonii	1	0.3%
Bassweed	Potamogeton amplifolius	1	0.3%
Spikerush	Eleocharis sp.	1	0.3%

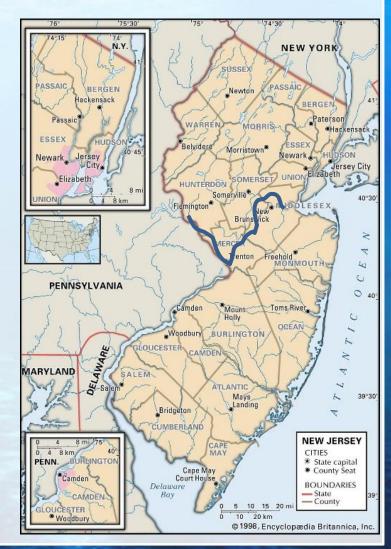
Hydrilla (*Hydrilla verticillata*)


Percent Abundance 2016/2017 New Croton Reservoir Section 1

Phase 3: Hydrilla Tuber Monitoring

Site	Description	# Cores	Tubers (m²)	Turions (m²)
NCR-1	Section 3; corner of dam	3	1299.4	0
NCR-2	Section 1; Inlet Cove	4	187.6	0
NCR-3	Section 1; Islands	4	1112.2	26.8
NCR-4	Section 5; Boat Launch	3	1997.8	53.4
NCR-5	North Shoreline by Power Lines	4	1031.8	26.8

- November
- 5 Stations
- 3-4 Cores per station



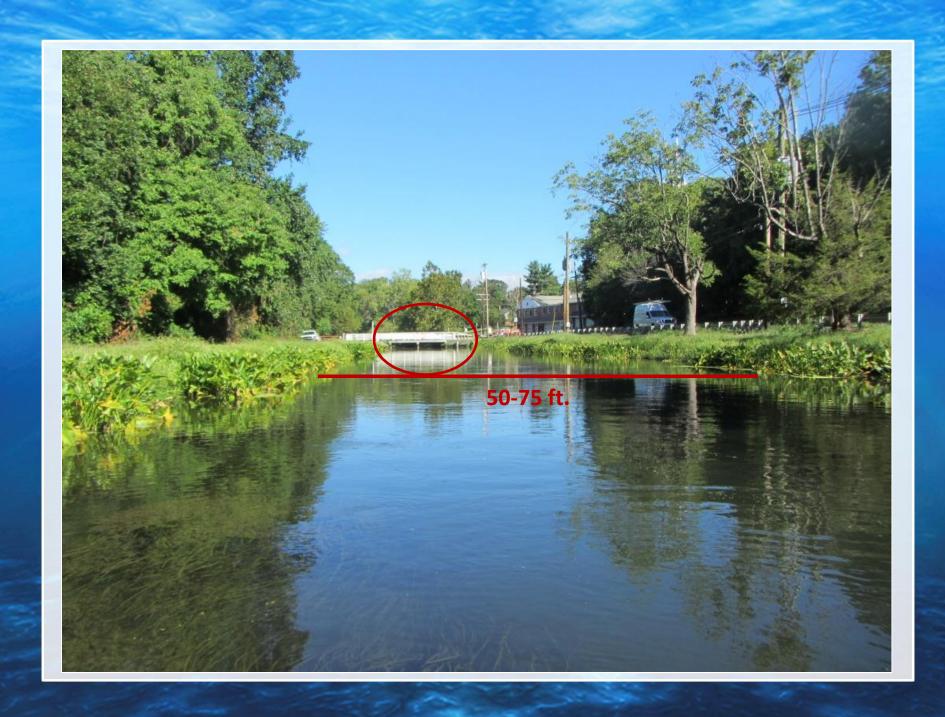
Case Study #2: The D&R Canal

Project Site

- Delaware & Raritan Rivers
- Central New Jersey
- Constructed in 1830's
 - Mostly hand-dug
 - Anthracite: PA to NJ
- Length: 66 miles
- Operated by the NJWSA
- 100 MGD Water Transfer

For more information on the Project: http://www.njwsa.org/hydrilla.html

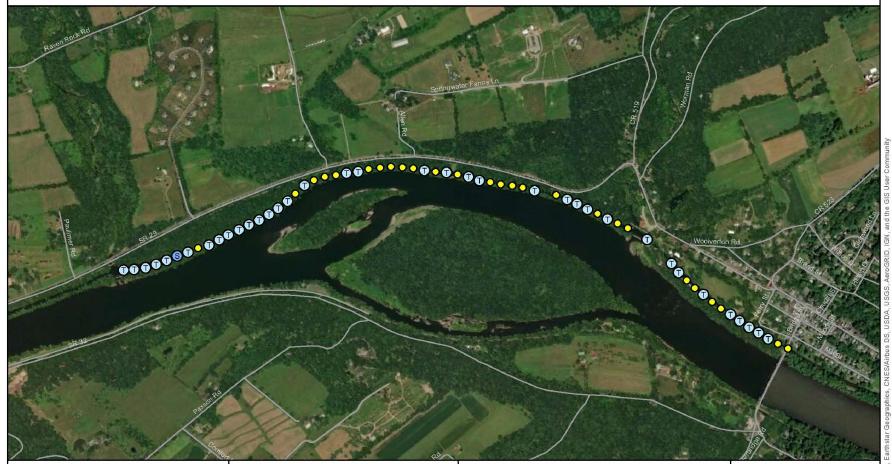
D&R Canal


Numerous Stakeholders

- NJDEP, NJDF&W, D&R Canal Commission, NJ Div. of Parks, ACOE, Many Friends Organizations
- Nine Canal Water Users (5 potable)
- Primary Goal: Suitable Water Flow
- 2016: Flow Decrease
 Mechanical SAV Removal
 - July discovered hydrilla
- 2016 SAV Monitoring
 - Modified PIM Mapping (Sept.)
 - Hydrilla Tuber Monitoring (Nov.)

D&R Canal: Getting it Right

- 2016 Project Challenges
 - Timing of Discovery
 - RFP Process
 - Limited Budget
 - How to Map SAV in a Canal
 - Access to Canal
- 2016 Project Goals
 - Determine Extent of Hydrilla Infestation
 - Develop a Multi-year Control Project
 - Consider all the Stakeholders
 - Repeatable



NON-TREATMENT AREA OVERALL AQUATIC PLANT ABUNDANCE SEPTEMBER 21, 2018

DELAWARE & RARITAN CANAL Non-Treatment Area Aquatic Vegetation Survey September 21, 2018

Total Sample Sites: 63

Plant Density O = No Plants

Trace Plants

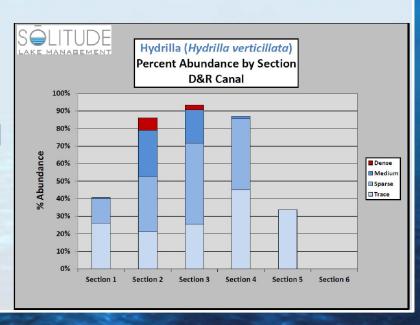
Sparse Plants

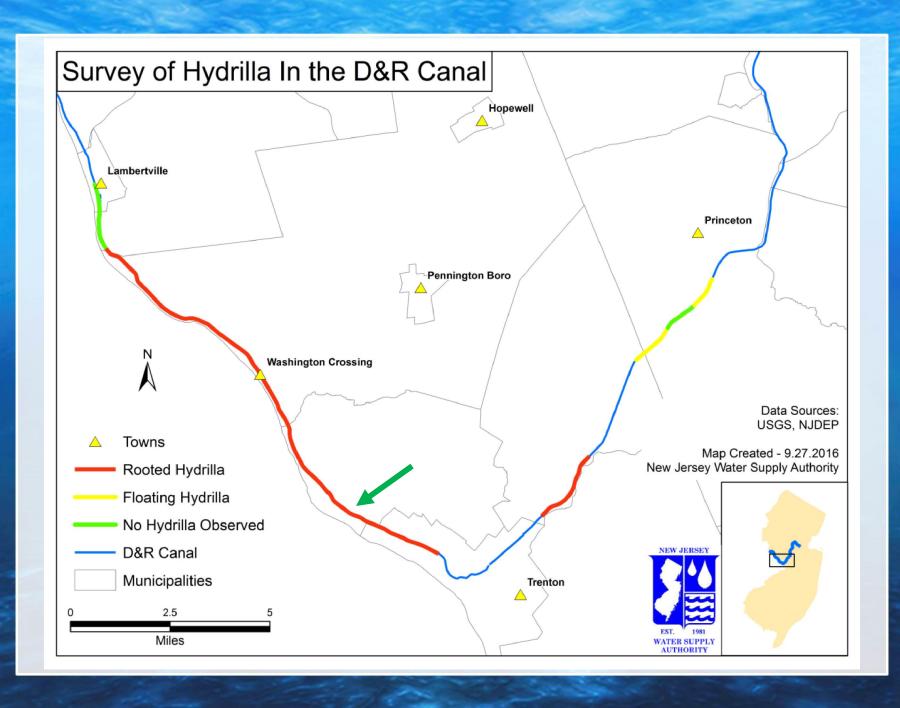
= Medium Plants

= Dense Plants

ent	ution
Ser.C	strik
	ă

Sites	Percent
37	59%
36	97%
1	3%
0	0%
0	0%
	37 36 1

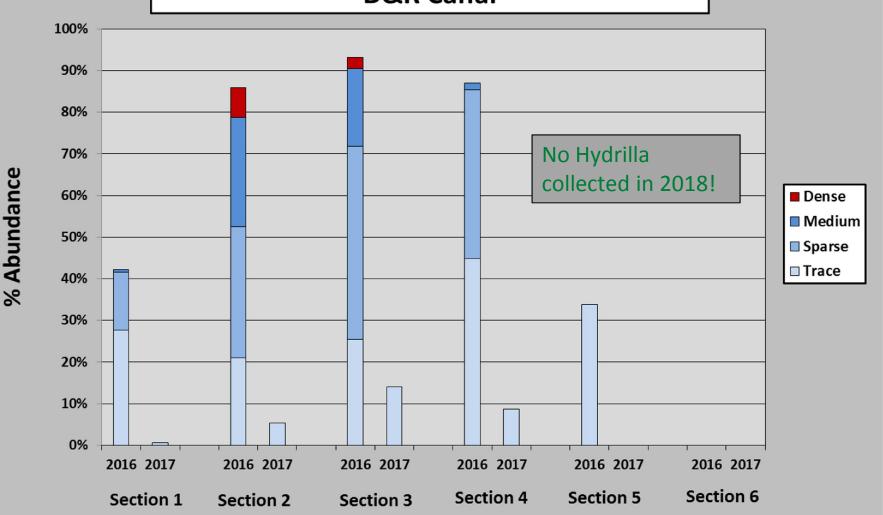

0 280 560 1,120 Feet source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/A

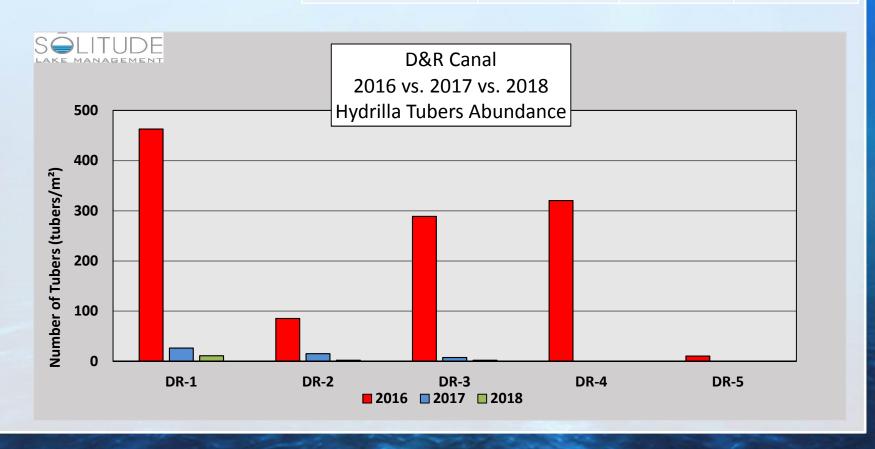

2016 SAV Monitoring

Pre-Control Monitoring

- 18.31 Miles
- 597 GPS-referenced Stations
 - 2 tosses per station (West/East Shore)
 - 50 meters apart
- Started Upstream
 - Visual Surveys
 - Discovered on Main Canal
- Documented all SAV
- 2017 SAV Man. Plan

2017-2019 Hydrilla Control Program


- Low-dose Fluridone Injection (May-Sept.)
- 2017 SAV Monitoring
 - Re-map Treatment Area
 - Hydrilla Tuber Monitoring
 - Map Entire D&R Canal
 - 1813 GPS-referenced Stations
 - Confirmed Hydrilla Extent
 - Discovered Fanwort
 - Supplemental Weekly/Monthly Surveys
- 2018 SAV Monitoring
 - Treatment Area and Tuber Monitoring only


Hydrilla (Hydrilla verticillata)

2016 vs 2017 Percent Abundance by Section D&R Canal

Hydrilla Tuber Monitoring

Tuber Sampling Stations	2016 (tubers/ m²)	2017 (tubers/ m²)	2018 (tubers/ m²
DR-1	462.8	26.5	11.2
DR-2	85.6	15.2	2.2
DR-3	288.9	7.6	2.2
DR-4	320.4	0	0
DR-5	10.7	0	0

Case Study #3: Lower Hudson River SAV Monitoring

- Croton River, Westchester County, NY
 - Downstream of the New Croton Reservoir
 - Flows into Hudson River
 - Hydrilla Discovered 2013
 - River Mapped in 2014
- 2015 SAV Monitoring

NEW YORK STATE OF OPPORTUNITY

A Program of the New York State Department of Environmental Conservation

- Funded by Hudson River Estuary Program
 - NYSDEC
 - Support from New England Interstate Water Pollution Control Commission (NEIWPCC)

Project Goals

Croton River Hydrilla Management Plan

- Lead Agency
- Source of Funding
- Stakeholder Engagement
- Hydrilla Established Outside of Croton River?

2015 Hudson River SAV Monitoring

- Identify Suitable Hudson River SAV Locations
 - PIM Mapping (Reasonable Effort)
 - Hydrilla and Wild Celery Target Species
 - But document all species
 - Hydrilla Tuber Monitoring (if hydrilla confirmed)
- Develop a Priority Ranking for Locations
 - Future Monitoring Efforts

Sampling Locations

46 Locations

- 70 mile stretch of the Hudson River
- Marinas, boat launches, backwaters and marshes
- Six Counties
- Near Five Bridges

Selected by NYSDEC

+/- Four Locations

Size Range:

.07 acres to 639 acres

Project Challenges

Finding SAV Habitat

 Turbidity, wind, tidal action, shoreline, water depth

Location Access

- No boat launches
- Tidal
- Bridges
- Property Owners

Time Line

 8 weeks to conduct field surveys

Location Variability/Acreage Travel Time

Estimated 120 hours driving to/from sites

COONTAIL (Ceratophyllum demersum) DISTRIBUTION

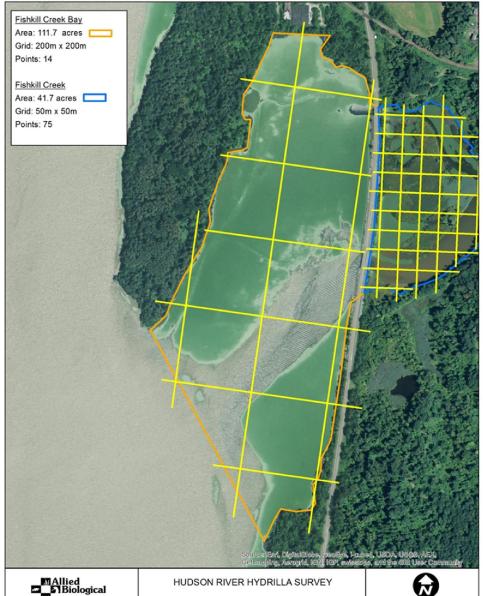
Sampling Stations: 75

Grid Size Changes

Fish Kill Creek Bay

111.7 acres

200 m grid: 14 sites


100 m grid: 50 sites

• 50 m grid: ~145 sites

Fishkill Creek

41.7 acres

- Used 50 m grid
- 75 Sites

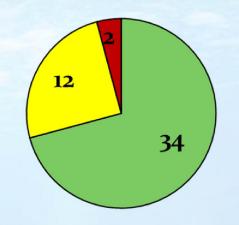
Location: Beacon, New York Site: Fishkill Creek Bay

2015 Results

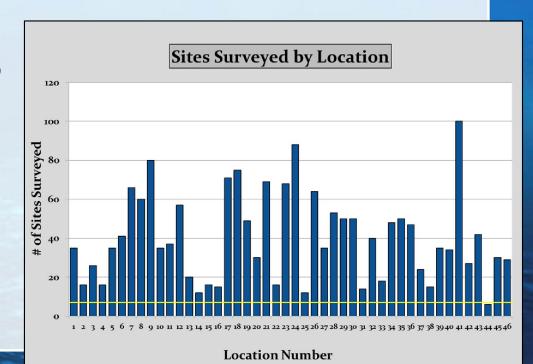
46 Different Locations

Most used a 50 m grid

1,838 GPS-referenced Sites


Two tosses/site

1,102 sites with SAV


- 59.95% of the sites
- Most species collected at >5%

384 Maps Generated No Hydrilla Documented!

- Dominant: Small Duckweed
- 3 of top 4 SAV were Invasive
 - EWM, WC, BN

□ 50 m grid □ 100 m grid ■ 200 m grid

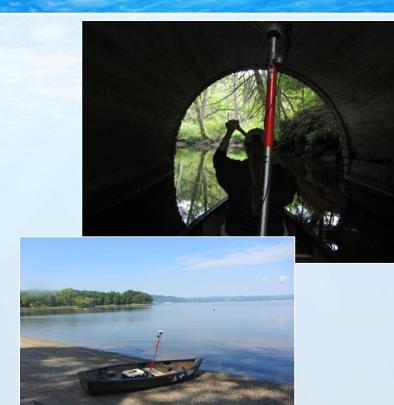
Priority Ranking Criteria

- SAV Habitat Quality
 - SAV Diversity
 - SAV Abundance
- Keystone SpeciesPresent
 - Common Waterweed
 - Wild Celery
- Proximity to Croton River

In General: Marinas and Boat Launches on the Hudson River are Poor SAV Habitat

Low Priority	Moderate Priority	High Priority
Nyack Memorial Park BLS	Bowline Point Park	Half-moon Bay
Haverstraw Bay Park	Cedar Brook Pond	Georges Island Park
Haverstraw Marina	Lent's Cove	Popolopen Creek
Minisceongo Yacht Club	Moodna Creek	Dickie Brook
Piermont Marsh	Hyde Park Marina	Croton Bay
Viking Boat Yard	Fishkill Creek Bay	Annsville Creek
Newburgh Boat Launch Site	Marlboro Yacht Club	Iona Marsh
Front Street Marina	Vanderbilt Mansion Cove	Moodna Creek Bay
Sloop Hill Boat Launch Site		Constitution Marsh
Riverfront Green Park		Foundry Cove Bay
Peekskill Land Park		Foundry Cove
Denning's Point Bay		Wappinger's Creek
Riverfront Park		Norrie State Park
Waryas Park		Black Creek Preserve
Poughkeepsie Yacht Club		Fishkill Creek
Chelsea Boat Launch Site		Sleightsburg Park
Shepherd's Landing/Mariners		Vanderburgh Cove
Charles Rider Boat Launch Site		Kemey's Cove
Scarborough Park		Kingston Point Park Marsh

Moving Forward2016


Volunteer Surveys

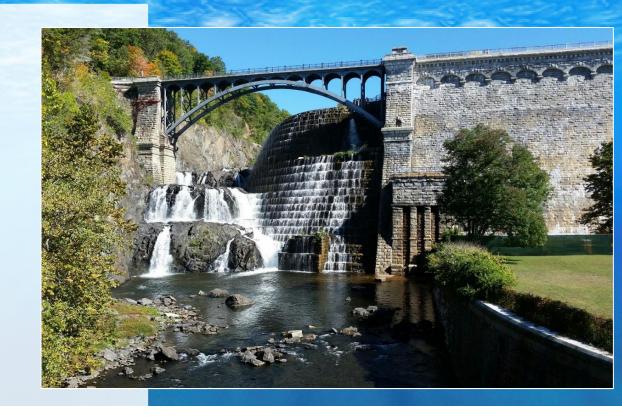
2017 to 2021

- Surveys Added to Croton River Hydrilla Control Project
- 22 High Priority Locations

2018

- Added 8 new Lower Hudson Locations
- NYSDEC Funded Upper Hudson Surveys
 - 18 Locations
 - North of Kingston, NY

For more information on the Project:


https://www.dec.ny.gov/animals/106386.html

Thank you! Questions?

By Chris Doyle, CLM

Director of Biology

CDoyle@solitudelake.com

solitudelakemanagement.com • 888.480.LAKE